联系方式
地 址:深圳市龙岗区南湾街道平吉大道1号建昇大厦B栋1605号(李朗软件园对面)
联系人:周工
电 话:0755-88820678
传 真:
信 箱:498187676@qq.com


欢迎新老朋友来电洽谈业务!

PCB抄板 >> PCB抄板 >> 当前位置
pcb抄板PCB技术在高速设计中的特性阻抗问题
  对电池来说,当信号沿着传输线传播,并且每隔0.01纳秒对连续0.06英寸传输线段进行充电。从电源获得恒定的电流时,传输线看起来像一个阻抗器,并且它的阻抗值恒定,这可称为传输线路的“浪涌”阻抗(surge impedance)。
    同样地,当信号沿着线路传播时,在下一步之前,0.01纳秒之内,哪一种电流能把这一步的电压提高到1伏特?这就涉及到瞬时阻抗的概念。
    从电池的角度看时,如果信号以一种稳定的速度沿着传输线传播,并且传输线具有相同的横截面,那么在0.01纳秒中每前进一步需要相同的电荷量,以产生相同的信号电压。当沿着这条线前进时,会产生同样的瞬时阻抗,这被视为传输线的一种特性,被称为特性阻抗。如果信号在传递过程的每一步的特性阻抗相同,那么该传输线可认为是可控阻抗传输线。
    Zen的方法是先“产生信号”,然后沿着这条传输线以6英寸/纳秒的速度传播。第一个0.01纳秒前进了0.06英寸,这时发送线路有多余的正电荷,而回路有多余的负电荷,正是这两种电荷差维持着这两个导体之间的1伏电压差,而这两个导体又组成了一个电容器。
    在下一个0.01纳秒中,又要将一段0.06英寸传输线的电压从0调整到1伏特,这必须加一些正电荷到发送线路,而加一些负电荷到接收线路。每移动0.06英寸,必须把更多的正电荷加到发送线路,而把更多的负电荷加到回路。每隔0.01纳秒,必须对传输线路的另外一段进行充电,然后信号开始沿着这一段传播。电荷来自传输线前端的电池,当沿着这条线移动时,就给传输线的连续部分充电,因而在发送线路和回路之间形成了1伏特的电压差。电路板克隆每前进0.01纳秒,就从电池中获得一些电荷(±Q),恒定的时间间隔(±t)内从电池中流出的恒定电量(±Q)就是一种恒定电流。流入回路的负电流实际上与流出的正电流相等,而且正好在信号波的前端,交流电流通过上、下线路组成的电容,结束整个循环过程。
    在高速设计中,可控阻抗板和线路的特性阻抗是最重要和最普遍的问题之一。首先了解一下传输线的定义:传输线由两个具有一定长度的导体组成,一个导体用来发送信号,另一个用来接收信号(切记“回路”取代“地”的概念)。在一个多层板中,每一条线路都是传输线的组成部分,邻近的参考平面可作为第二条线路或回路。一条线路成为“性能良好”传输线的关键是使它的特性阻抗在整个线路中保持恒定。
    线路板成为“可控阻抗板”的关键是使所有线路的特性阻抗满足一个规定值,通常在25欧姆和70欧姆之间。在多层线路板中,传输线性能良好的关键是使它的特性阻抗在整条线路中保持恒定。
    但是,究竟什么是特性阻抗?理解特性阻抗最简单的方法是看信号在传输中碰到了什么。当沿着一条具有同样横截面传输线移动时,这类似图1所示的微波传输。假定把1伏特的电压阶梯波加到这条传输线中,如把1伏特的电池连接到传输线的前端(它位于发送线路和回路之间),一旦连接,这个电压波信号沿着该线以光速传播,它的速度通常约为6英寸/纳秒。当然,这个信号确实是发送线路和回路之间的电压差,它可以从发送线路的任何一点和回路的相临点来衡量。
返回顶部